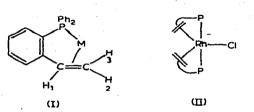
Preliminary communication

Five-coordinate olefin complexes of rhodium(I) formed by an olefinic tertiary phosphine

M.A. BENNETT* and E.J. HANN

Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600 (Australia) (Received March 1st, 1971)


Current interest in the chemistry of rhodium with chelating olefinic tertiary phosphines¹⁻⁴ prompts us to give preliminary details of work with o-styryldiphenylphosphine, o-CH₂=CHC₆H₄PPh₂ (SP), which forms stable mono-olefin complexes with Pt^{II 5}, Fe⁰, Ru^{0 6}, Cr⁰, Mo⁰, W^{0 7}, Mn^I and Re^{I 8}.

Reaction of SP with the cyclooctene complex $[RhCl(C_8H_{14})_2]_n$ gives a yellow complex of empirical formula RhCl(SP)2**. Higher yields (~85%) and purer product are obtained by reducing ethanolic hydrated rhodium(III) chloride (1 mole) with formaldehyde in the presence of > 2 moles of SP. Use of triphenylphosphine in this reaction provides a convenient synthesis of RhCl(CO)(PPh₃)₂ 9,10 , and in our case a likely intermediate is [Rh(CO)(SP)₂]⁺Cl⁻ (see below). The complex RhCl(SP)₂ is monomeric in chloroform and its 100 MHz proton NMR spectrum in CD₂Cl₂ shows broad signals at δ 4.17 and 3.17 in an intensity ratio of 1/2 assignable to the α - and β -vinylic protons respectively***. The upfield shift of these resonances compared with those of free SP⁷ suggests that both double bonds are coordinated. The breadth of the signals is due to strong coupling with two³¹P nuclei which are themselves strongly coupled, and hence probably *trans*. The ³¹P-decoupled NMR spectrum is very similar in appearance to those of $Cr(CO)_4$ (SP) ^{6,7} and Fe(CO)₃(SP) ⁶ [δ 3.03 ppm (doublet, intensity 1, H₃) δ 3.30 ppm (doublet, intensity 1, H₂) and δ 4.17 ppm (doublet of doublets, intensity 1, H₁), protons being numbered as in (I); J_{13} 10 Hz, J_{12} 8 Hz, $J_{23} \sim 0$]. The far infrared spectrum of RhCl(SP)₂ shows a band at 237 cm⁻¹ (Nujol mull) due to ν (RhCl); this is absent from the spectrum of RhBr(SP)₂, for which ν (RhBr) appears at 143 cm⁻¹. These observations suggest that RhCl(SP)₂ is a five-coordinate complex both in solution and in the solid state. The molar conductivity (Λ_{∞}) of the complex in nitromethane (17.6 ohm⁻¹ · cm² at 28°) and in nitrobenzene (1.4 ohm⁻¹ \cdot cm² at 28°) is much less than expected for a 1/1

J. Organometal. Chem., 29 (1971) C15-C16

^{*}Author to whom enquiries may be addressed.

^{}**First prepared by this method by Dr. S.J. Gruber, University College London, 1967. *******A previous report (P.R. Brookes, cited in ref. 1) that the β -vinylic proton resonances of RhCl(SP)₂ appear at δ 4.2 and 3.2 is incorrect.

electrolyte, showing that ionisation to $[Rh(SP)_2)$ solvent)]⁺ and Cl⁻ is incomplete. We suggest the trigonal bipyramidal structure (II) for RhCl(SP)₂, analogous to RhCl[P(C₆H₄CH=CH₂-o)₃]¹ and RhCl[P(CH₂CH₂CH=CH₂)₃]², though other possibilities (*e.g.* tetragonal pyramidal structures) cannot be excluded.

Treatment of $[RhCl(CO)_2]_2$ with SP (2 moles per g-atom of Rh) in benzene gives a five-coordinate cationic complex $[Rh(CO)(SP)_2]Cl[\nu(CO) 2039 \text{ cm}^{-1} \text{ in CHCl}_3]$, which loses CO rapidly in solution, and more slowly in the solid state, to give RhCl(SP)₂. The cation is reformed when RhCl(SP)₂ is treated with CO at 25°, 1 atm, and can be precipitated as its PF₆ salt. This shows no tendency to lose CO, probably owing to the poor coordinating ability of PF₆^{*}. The presumably planar cation $[Rh(SP)_2]^*$ can be isolated as its tetraphenylborate salt by treating RhCl(SP)₂ with NaBPh₄; this reacts reversibly with ethylene to give $[RhCl(C_2H_4)(SP)_2]^*$, which is stable only in the presence of ethylene. $[Rh(SP)_2]^*$ also undergoes additions with CO, PF₃, PPh₃, PMe₂Ph, AsPh₃, H₂ and C₂(CN)₄, which will be discussed in a later publication.

REFERENCES

- 1 D.I. Hall and R.S. Nyholm, Chem. Commun., (1970) 488.
- 2 P.W. Clark and G.E. Hartwell, Inorg. Chem., 9 (1970) 1948.
- 3 G.E. Hartwell and P.W. Clark, Chem. Commun., (1970) 1115.
- 4 M.A. Bennett, S.J. Gruber, E.J. Hann and R.S. Nyholm, J. Organometal. Chem., 29 (1971) 12.
- 5 M.A. Bennett, W.R. Kneen and R.S. Nyholm, J. Organometal. Chem., 26 (1971) 293.
- 6 M.A. Bennett, G.B. Robertson, I.B. Tomkins and P.O. Whimp, Chem. Commun., (1971) 341.
- 7 M.A. Bennett, R.S. Nyholm and J.D. Saxby, J. Organometal Chem., 10 (1967) 301.
- 8 L.V. Interrante and G.V. Nelson, Inorg. Chem., 7 (1968) 2059.
- 9 D. Evans, J.A. Osborn and G. Wilkinson, Inorg. Synth., 11 (1968) 99.
- 10 J.J. Levison and S.D. Robinson, J. Chem. Soc. A, (1970) 2947.

J. Organometal. Chem., 29 (1971) C15-C16